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ABSTRACT

Gliomas, the most common primary tumors in the central nervous
system (CNS), can be categorized into 4 grades according to the
World Health Organization. The most malignant glioma type is
grade [V, also named glioblastoma multiforme (GBM). However,
the standard treatment of concurrent temozolomide (TMZ)
chemotherapy and radiotherapy after maximum resection does not
improve overall survival in patients with GBM. Targeting
components of the CNS microenvironment represents a new
strategy for improving the efficacy of glioma treatment. Most
recent studies focused on T cells. However, there is a growing body
of evidence that tumor-associated macrophages (TAMs) play an
important role in tumor progression and can be regulated by a
wide array of cytokines or chemokines. New TAM-associated
immunotherapies may improve clinical outcomes by blocking
tumor progression and prolonging survival. However,
understanding the exact roles and possible mechanisms of TAMs
in the tumor environment is necessary for developing this
promising therapeutic target and identifying potential diagnostic
markers for improved prognosis. This review summarizes the
possible interactions between TAMs and glioma progression and
discusses the potential therapeutic directions for TAM-associated

immunotherapies.

1 Introduction

and oligoastrocytoma, and gliomas can be
classified into four grades based on malignancy

Gliomas are the most common primary brain
tumors. Gliomas affect the central nervous
system (CNS) by secreting signaling molecules
that influence the microenvironment. Gliomas
can be categorized into subtypes based on
different methods. Histologically, gliomas can be

grouped into astrocytoma, oligodendroglioma,
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[1]. Of note, the grade of glioma and the
malignant degree are positively correlated.
Grade [V
multiforme (GBM), often present the worst

gliomas, also called glioblastoma

prognosis and are a deadly threat for patients. The
current treatment for GBM is maximum surgical

resection with radiotherapy and temozolomide
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(TMZ) based chemotherapy. Unfortunately,
survival in GBM patients is still less than 15
months after diagnosis [2] because of the high
rate of metastasis and recurrence [3]. Hence,
exploring new therapeutic approaches for GBM
is crucial.

Interestingly, the glioma microenvironment
differs from the physiology of the broken
blood-brain barrier (BBB), which is induced by
pro-inflammatory molecules produced by
microglia and tumor cells [2]. Tumor-associated
macrophages (TAMs), the most abundant cell
population in the microenvironment, consist of
resident CNS microglia and peripheral
monocytes, which easily infiltrate into the CNS
via the damaged BBB [4, 5]. The formation of the
fully-functioning TAMs requires multiple
phases, which will be discussed in further detail
below. TAMs are recruited to either the primary
tumor or metastasis tumor region. Then, TAMs
are polarized into M1 or M2 phenotypes, with
anti-tumor and pro-tumor functions, respectively,
by chemokines and cytokines. The chemokines
and cytokines are secreted by the malignant
cells or other non-neoplastic cells in the
microenvironment [3, 6]. TAMs can exert dual
influences on glioma progression, one of which
promotes tumor progression and increases
metastasis burden in the CNS in a highly lethal
manner [7]. Overall, the glioma microenviron-
ment may facilitate malignant tumor progression
and recurrence [8]. Therefore, targeting the
TAMs in the CNS has the therapeutic potential
to improve the prognosis of patients with

gliomas.

2 Tumor-associated macrophages in the
glioma tumor microenvironment

2.1 Glioma tumor microenvironment

Under normal physiological conditions, the CNS
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hosts a unique microenvironmental condition
that differs significantly from most other organs
Under
conditions, the tumor microenvironment (TME)

and tissues [9]. neuropathological
consists of a variety of non-neoplastic cells,
cytokines, and extracellular matrix in addition
to neoplastic cells [10]. The non-neoplastic cells

types,
tibroblasts, epithelial cells, granulocytes, mast

consist of multiple cell including
cells, and macrophages [11]. A majority of
non-neoplastic cells are TAMs, which occupy up
to 50% of the tumor mass [12] and are believed
to regulate tumor evolution by supporting its
expansion or suppressing its progression.

In recent years, a large body of literature has
been devoted to the analysis of the TME
characteristics after the infiltration of peripheral
macrophages. TAMs in gliomas are constantly
associated with tumor progression and patient
prognosis [13]. The overall TME displays an
immunosuppressive status due to the critical
permeability of the BBB and less infiltration of
lymphocytes [9].

2.2 Origin and recruitment of TAMs

The earliest observation of leukocytes in
malignant tumors was in approximately the
middle of the 19t century [14]. However, it was
not until the 20" century that the specific
interaction between TAMs and malignant tumor
cells was given attention. Now, there is a
growing body of evidence that TAMs play a
significant role in forming a suitable TME for
tumor growth, progression, metastasis [15, 16].

Under

originating from yolk sac progenitor cells in the

homeostatic conditions, microglia,
early embryo [17], are the main population of
brain macrophages, accounting for about 10% of
the adult brain cell population [18]. The
interaction between these resident microglia and
the BBB contributes [19]

protection of the CNS and the maintenance of

to the effective
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the immune homeostasis. Under neuropathologic
conditions, such as cancer or inflammation,
additional peripheral macrophages are recruited
to the brain from the bone marrow [10] due to
the impaired BBB [20]. Recruitment signals,
including CSF-1, MCP-1, CCL2, and HGF, are
often produced by the tumor cells themselves
(Fig. 1) [21-23]. Inflammatory monocytes, which
are precursors of the macrophages, drastically
increase in the blood and are recruited to the
tumor sites [24]. Interestingly, the peripheral
infiltrating macrophages, once activated, are
hard to distinguish from the resident microglia,
though their
pathological TME and tumor progression may
be different [25].

TAMs can abundantly populate most solid

even contribution to the

tumors and can represent up to 50% of the
[12].
number of infiltrating macrophages is higher in

GBM than
astrocytomas in patients with primary brain

glioblastoma mass Significantly, the

in astrocytomas or anaplastic

tumors [9, 26], suggesting that the density of
TAMs
malignancy in glioma [27]. Overall, the TAMs,

contributes to a higher degree of
consisting of resident microglia and infiltrating
macrophages, occupy a great deal of the
microenvironment in gliomas [28] and have the
capacity to modify clinical outcomes [29].

2.3 Activation and polarization of TAMs

In addition to recruitment signals, the TME
contains a variety of different activation and
polarization signals. Mobility and diversity are
hallmarks of TAMs. To satisfy the greater
demand to control the damage in the CNS,
during tumor development or infection, TAMs
can be induced into two different subtypes in
response to different stimuli [30]. The classically
activated macrophages (type-1 macrophages,
M1) are pro-inflammatory. The alternatively
activated macrophages (type-2 macrophages,

Brain Sci. Adv.

M2) are anti-inflammatory. TAMs are versatile
cells that can be polarized in response to
different stimuli provided either in vitro [31] or
in vivo [32].

Different TAMs, like microglia and macrophages,
or M1 and M2 phenotypes, have different
responses to TME activation signals. The M1
phenotype responds to Toll-like receptor 4
(TLR4) ligands and interferon (IFN)-y [30],
while the M2 phenotype appears after being
exposed to anti-inflammatory molecules, including
IL-4, TL-10, IL-13, and glucocorticoids (GCs) [33].
M2 macrophages can be sub- classified into M2a,
M2b, and M2c states (Fig. 1) [34].

Notably, TAMs can alter clinical outcomes by
releasing a wide array of cytokines and growth
factors, such as vascular endothelial growth
factor (VEGF), IL-8, and basic fibroblast growth
factor, in response to factors produced by
malignant cells themselves [15]. In this manner,
TAMs can either facilitate or suppress tumor
growth, proliferation, and metastasis. However,
due to the lack of specific markers, identification
of M1 and M2 phenotypes in human gliomas is
difficult [20]. In addition, in a human glioma
single-cell RNA-seq-based transcriptomic analysis,
a subpopulation of TAMs was shown to
co-express with M1 (TNF «) and M2 (IL-10)
markers [35].

M2 macrophages are closely related to the
growth and progression of gliomas and execute
distinct functions that differ from the M1
phenotype. The ratio of M2 macrophages in
TAMs correlates with the histological type [36].
In benign tumors, TAMs are mainly M1 type
macrophages that can strongly threaten the
microorganisms and engulf tumor cells in the
TME. In malignant tumors, TAMs are mainly
M2  type

immunosuppressive factors to promote tumor

macrophages that can secrete

invasiveness [37, 38]. Taking advantage of the

https://mc03. manuscriptcentral.com/brainsa | Brain Science Advances
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Fig. 1 The recruitment and polarization process of tumor-associated macrophages (TAMs). After being recruited to the central nervous

system, TAMs can be polarized into M1 or M2 phenotypes. The M1 and M2 macrophage phenotypes are not fixed. The phenotypes can be

converted from one to the other in response to different cytokines in the tumor microenvironment.

different effects of M1 versus M2 macrophages
on tumor progression has emerged as one of the
most promising therapeutic options, which we
will be explained in Section 4.

3 Role of TAMs in the development of
gliomas

M2 macrophages [36] play a pivotal role in
immune suppression and pro-tumor effects
Therefore, the
presence of M2 macrophages results in poor

during tumor progression.
clinical prognosis [39]. The capacity of TAMs to
facilitate tumor progression relies on promoting
microenvironmental immunosuppression, inducing
tumor vascularization, and potentiating tumor
growth. Overall, there is a growing appreciation
that M2 macrophages, which are abundant in
primary malignant tumor masses, possess the
ability to remodel the microenvironment to
support tumor growth. Thus, the main effect of
TAMs

progression [37].

in gliomas is to promote tumor

Yy
ANERS A hazed
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3.1 TAMs promote immune suppression

Macrophages, either resident microglial cells or

infiltrating peripheral macrophages, are a
crucial participant in the CNS immune response.
TAMs

glioma TME by generating a great number of

achieve immunosuppression in the
immunosuppressive cytokines and chemokines
[40]. For instance, interleukin-10 (IL-10) plays an
essential role in the innate and adaptive immune
response and supports the immunosuppressive
microenvironment. However, the specific me-
chanism by which IL-10 mediates this imm-
unosuppression is unclear. According to a recent
study, IL-10 may promote immune evasion by
up-regulating KPNA2. Tumor progression was
significantly reduced after the genetic knock-
down of KPNA2 [41]. Overexpression of the
indoleamine 2, 3-dioxygenase (IDO) enzyme
also has immunosuppressive potential. IDO can
consume tryptophan (Trp) by converting it into
kynurenine (Kyn), resulting in immune suppres-
sion in the microenvironment [42]. Altogether,
the release of IL-10 and the abundant IDO lead

®SAGE
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to decreased recruitment and activation of T

cells, decreased major histocompatibility
complex (MHC) expression, and conversion of
M1 to M2 macrophages [43]. Of note, not only
are sufficient functional T cells crucial for a
powerful T cell immune response, but the
capacity to present and recognize antigens is
also of great importance. Antigen recognition
relies on the co-expression of human MHC,
especially MHC class I (MHC-1) [44]. Low
expression of MHC-1 promotes resistance to
T-cell-mediated

microenvironment [43].

anti-tumor effects in the
Interestingly, in addition to the exhaustion of
T cells, the regulatory T cells (Tregs), which are
believed to have the ability to suppress the
immune response as well, are increased [45].
Due to the over-consumption of oxygen caused
by tumor growth and abnormal neovasculariza-
tion, hypoxia develops in the glioma TME.
Hypoxia exacerbates immunosuppression by
inducing the migration of Tregs to the hypoxic
area [43]. One possible mechanism for the
migration of Tregs is the hypoxia-inducible
factor la (HIF-1la), which can shunt glucose
away from the mitochondria. HIF-1a induces
Tregs to use pyruvate for lipid metabolism
under hypoxic conditions. Notably, mild-type
Tregs are more susceptible to inhibition of lipid
oxidation than HIF-1a-deficient Tregs [46].

3.2 TAMs induce glioma vascularization

Tumor progression relies on angiogenesis. The
tumor can have sufficient nutrients and oxygen
via diffusion from the TME without any new
vessels, if the tumor mass is small [47]. A tumor
will not grow, let alone metastasize, beyond 1-2
cm?® size without vascularization to get enough
nutrients and oxygen [48]. Once the TAMs are
recruited to the tumor region and fully activated,
they can produce a wide array of cytokines,
chemokines, and growth factors, like VEGF.

Brain Sci. Adv.

VEGF is a major contributor to angiogenesis in
gliomas. Interestingly, VEGF not only facilitates
vascularization and accelerates tumor progres-
sion [47, 49], but also contributes to immuno-
suppression in the glioma TME by blocking the
activation of dendritic cells and recruiting Tregs
[50].

Apart from VEGE, various signaling molecules
also give rise to angiogenesis. In fact, due to
in VEGF-targeted [51],
controlling the overexpression of IL-6 and
inhibiting the CXCL2-CXCR2 signaling pathway
important

resistance therapy

have emerged as therapies in
blocking angiogenesis of glioma. IL-6 is now
appreciated as a critical cytokine involved in
abnormal angiogenesis. IL-6 is generated by
TAMs and is abundant in the glioma TME [52].
Notably, IL-6 can promote angiogenesis and
facilitate tumor evasion in multiple human
cancers [53]. The overexpression of CXCL2 has
been observed when isolating fresh TAMs from
gliomas. CXCL2 is believed to contribute to
vessel formation more than VEGF. Suppression
of the CXCL2-CXCR2

depletes up to 50% of the vessel density and

signaling pathway
reduces the glioma mass, suggesting that
CXCL2 is a crucial participant in the abnormal
angiogenesis in gliomas [54].

The hypoxic tumor environment seems to
accelerate the process of angiogenesis. Due to
accumulated progression and massive angiogenesis
of gliomas, the microenvironment eventually
becomes hypoxic [43]. The properties of tumor
cells, such as tumor progression and invasion,
can be influenced by hypoxia [55] or even
pushed into a more malignant type [56]. For
example, under hypoxic conditions, lactic acid is
prone to accumulate in the TME, leading to a
low pH environment. The low pH stimulates
proangiogenic gene expression [48] and VEGF
by stimulating the HIF-la-related signaling
pathway [50].

https://mc03. manuscriptcentral.com/brainsa | Brain Science Advances
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3.3 TAMs facilitate glioma growth

The interaction between TAMs and tumor
growth depends on several components of the
extracellular matrix. One of the most important
components is matrix metalloproteases (MMPs).
Elevated MMP levels correlate with glioma
growth. TAMs generate a variety of MMPs [57],
but most attention has been focused on
(MMP-2 and MMP-9), which
facilitate tumor growth and worsen the
prognosis. The elevation of MMP-2 and MMP-9
in the serum of patients with malignant tumors

gelatinases

is closely related to metastasis [58] and has a
significant negative impact on survival [59].
Periostin (POSTN) promotes tumor growth
and poor prognosis in patients with GBM via a
miR-340-5p-macrophage feedback loop [60]. Liu
et al. demonstrated that repressing miR-340-5p
POSTN. POSTN
influences aVB3 integrin and contributes to the

expression can regulate
recruitment of TAMs and polarization toward
M2 macrophages. Interestingly, transforming
growth factor -1 (TGFp-1), produced by the M2
macrophages, downregulates the expression of
HMGA-2 in GBM, which
miR-340-5p expression [60].

in turn affects

MMPs can be induced by many cellular
cytokines and chemokines in the glioma TME.
For example, TGFB-2, secreted by TAMs in the
microenvironment, can up-regulate the expression
of MMP-2. C-C motif ligand 2 (CCL2), also
generated by TAMs or patient-derived glioblas-
toma stem cells [61], can support the expression
of MMP-9. Interestingly, CCL-2 can also have an
impact on poor prognosis [62]. The serum levels
of CCL-2 are closely associated with the grade of
breast cancer. CCL promotes tumor progression
and suppresses overall survival through Smad3
and p42/44 MAPKs signaling [63].

In summary, TAMs are remodeled by neoplastic
cells in the glioma microenvironment and play a
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pivotal role in promoting tumor metastasis by
enhancing immunosuppression, inducing angiog-
enesis, and promoting growth. Of note, most of
the cytokines and chemokines involved in
tumor metastasis are multi-functional. For
instance, the MMP-9, described as a significant
participant of tumor growth, can also contribute
to angiogenesis [59], and VEGF contributes to

both immunosuppression and angiogenesis [50].

4 Immunotherapy targeting TAMs in the
treatment of gliomas

The current standard treatment for gliomas is
TMZ-based chemoradiotherapy after surgical
maximum resection. However, the invasive
nature of gliomas, especially of GBM, along
with its capacity to infiltrate into adjacent
normal brain tissue, leads to TMZ resistance [64]
and poor overall survival [65]. The anti-tumor
response of the standard treatment for glioma
can be improved if immunotherapeutic strategies
are concurrently activated. The CNS has been
long recognized as an immune- privileged site
[66]. However, there is a growing body of
evidence demonstrating that during pathological
invasion, the CNS resident microglia and
infiltrating macrophages actively participate in
the immune response by regulating components
of the TME as Thus,

immunotherapy might be of value in relieving

discussed above.
the immunosuppression in the glioma TME [8].
In addition, immunotherapy can take advantage
of the immune system's ability to specifically
recognize and respond to malignant or
non-malignant cells, while leaving the normal
brain tissue intact [67]. Overall, immunotherapy
inhibiting  the
macrophages or converting M2 macrophages to
M1 highlights

promising long-term survival in the future.

based on infiltration of

the possibility of a more
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4.1 Repolarized macrophages from the M2 to
M1 phenotype as a therapeutic target

As discussed in Section 2, polarized TAMs can
be further subdivided into M1 and M2
phenotypes based on their different surface
markers and functional characteristics [68]. Of
note, M1 and M2 macrophages have distinct
effects on tumor progression [69]. The immuno-
suppressive M2 phenotype makes up the
majority of TAMs in gliomas [15], and these cells
promote tumor invasion and angiogenesis [70].
In contrast, pro-inflammatory M1 macrophages
have the capacity for antigen presentation and
can, therefore, modulate immune responses
against neoplastic cells [71, 72].

The glioma TME can have either anti-tumoral
or pro-tumoral effects based on the proportion
of M2 phenotype in TAMs, and therefore, the
TME has a direct impact on glioma histological
grade [36, 73]. Promoting the polarization of M2
macrophages toward M1 macrophages in
gliomas can enhance the anti-tumor immune
response, suppress tumor growth, and reduce
tumor metastasis [74]. Correspondingly, M1 and
M2 macrophages are novel potential therapeutic
targets because of their plasticity and mobility.

Unlike the permanent phenotypic changes in
lymphocytes after exposure to cytokines [75],
the switch between M1 and M2 macrophages is
dynamic and reversible. The feasibility of
reversing an M2 phenotype back to an M1
depends on the molecules in the TME. Of note,
M1 and M2 activation of TAMs is strictly
controlled by a series of signaling pathways and
transcriptional and post-transcriptional regulatory
networks. The abnormal activation of these
pathways often occurs during the development
of brain tumors or injury [76].

The detailed activation and polarization
processes of M1 and M2 are described below.
M1 macrophages are often stimulated by

Brain Sci. Adv.

pro-inflammatory cytokines, including TNF,
IFN-y, and TLR4 ligands [77]. M1 macrophages
can present antigens and produce a variety of
pro-inflammatory cytokines, such as IL-12, IL-23,
type I IFN, CXCL1-3, CXCL-5, CXCLS8-10, nitric
oxide (NO), and reactive oxygen intermediates
(ROI) [78]. In contrast, M2 macrophages tend to
be stimulated by IL-4 or IL-13 and are often
observed in non-infectious conditions [76]. M2
macrophages produce anti-inflammatory cytokines
like IL-10 and TGF-f [79].

The macrophage polarization pathways,
especially the phosphorylation of STAT1 and
STAT3/STATS6, are crucial for controlling tumor
progression. Whether the M1 or M2 phenotype
is in dominance in the TME depends on which
signaling pathway is dominant. Activation of
(NF-xB) or STAT1 by
lipopolysaccharide (LPS) and IFN-y, results in

nuclear factor-xB
polarization toward M1 macrophages. M1l
macrophages respond to the tumor, leading to pro-
inflammatory conditions, including tumoricidal
effects and tissue-damage. Conversely, the M2
phenotype dominates the TME when STAT3 or
STAT®6 is activated by IL-4 and IL-10, enhancing
immune tolerance
metastasis [53, 76, 80].
Altogether, the M1 and M2 macrophages form

and promoting tumor

a complex CNS tumor microenvironment. Due
to the high production of “killing” cytokines,
M1 macrophages are involved in the Thl
response and give rise to tumoricidal activity.
On the other hand, M2 macrophages are
involved in the Th2 response and promote tissue
remodeling and immune tolerance, leading to
tumor progression [81].

Chlorogenic acid (CHA), one of the major
coffee polyphenols, is an ester of caffeic acid
with quinic acid. CHA is in a wide variety of
fruits and vegetables [82, 83]. In recent years, the
anti-tumor effects of CHA [82] have been
discovered. The therapeutic effect of CHA is due

https://mc03. manuscriptcentral.com/brainsa | Brain Science Advances
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to repolarization of M2 macrophages to MI.
Plasticity and mobility are hallmarks of TAMs
[84], and TAMs can be remodeled by a
CHA-educated TME. CHA therapy for patients
with glioma can skew the macrophages in the
TME away from the M2 phenotype and toward
the M1 phenotype by stimulating STAT1 and
repressing the STAT6 signal pathway. Both
STAT1 and STAT6 are critical for M1 and M2
phenotype polarization. Increased expression of
M1-related markers, like MHC [I and CDl1lc,
and reduced expression of M2 markers,
including Arg and CD206, can be detected in
CHA
Furthermore, CHA plays a role in inhibiting

vivo or in vitro after treatment.

abnormal vessel formation under hypoxic

conditions, which is crucial for tumor
progression as described previously. CHA can
reduce the transcription of HIF-la, which is
upstream of VEGEF, by inhibiting the HIF-1a/
AKT signaling pathway and blocking the
activation of VEGF and angiogenesis in lung
cancer cells [85]. Overall, hopefully, the
CHA-treated TME can result in the inhibition of
tumor growth and the reduction in tumor
weight [76]. CHA-associated immunotherapy
has the potential to improve glioma therapy.
Other switch M2 into M1

macrophages have promise

ways to
in prolonging
survival. Anti-CD47 treatment can disturb the
CDA47-SIRPa axis and/or Fc mediated tumor cell
shift toward an Ml
predominant phenotype in vivo. The increased

opsonization and

M1 macrophage ratio induces the glioma TME
to exhibit anti-tumor properties, which enhance
neoplastic cell phagocytosis [73, 86, 87].
Inhibition of the colony-stimulating factor-1
receptor (CSF-1R) can depolarize macrophages
from M2 macrophages to compromise glioma
progression and improve long-term survival.
CSF-1, along with CSF-2, stimulates TAM
polarization. CSF-2 promotes pro-tumor effects,
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while CSF-1 inhibits tumor growth, blocks
angiogenesis, and prolongs the survival [88].
According to Sun et al., CSF-1R correlates with
the histologic grade of glioma because of its
effects on extracellular signal-regulated kinase
1/2 (ERK1/2) signaling. Disrupting the CSF-1R
can indeed repress tumor migration [89].
Disruption of NF-«kB can also switch the M2
phenotype to M1 macrophages, resulting in
tumor regression in the ovarian tumor model
[90, 91]. Furthermore, disruption of NF-kB p50
expression in both TAMs and T cells can lead to
a compromise in GBM immune evasion by
suppressing M2 polarization. Analyzing the
differences in TAMs, T cells,
between wild-type mice and p50 mice with
GL261-Luc glioblastoma cells demonstrated that
mice lacking p50 favor an M1 macrophage

and survival

dominant microenvironment, which contributes
to the reduction in tumor mass. Hence, tumor
progression is greater in p50 mice than in
wild-type mice, which wultimately shortens
overall survival. In summary, NF-xB p50, in
both tumor T cells and TAMs, is a potential
target for GBM immunotherapy [92].
Remodeling M2 macrophages toward the M1
phenotype is a new potential strategy for
inhibiting angiogenesis and improving survival
in patients with gliomas. To verify this treatment,
Cui et al. built an organic brain tumor
microenvironment in vitro composed of
biomimetic cells, inflammation-related cytokines,
and extracellular matrix and conducted a series
of experiments. Blocking the transforming
growth family (-receptor 1 (TGFB-R1) and the
af can significantly control the neovasculariza-
tion when M1-like macrophages switch toward
M1 macrophages, relieving the immune
suppression and prolonging survival [93].
Overall, regulating the glioma microenviron-
ment or directly

targeting the signaling

pathways involved in TAM polarization toward
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the M1 phenotype shows promising potential in
relieving the immunosuppression, arresting the
proangiogenic behaviors, and improving the
long-term survival in patients with gliomas.

4.2 Inhibiting TAM recruitment as a therapeutic
target

A variety of immunotherapies targeting
macrophage recruitment have emerged. Instead
of directly targeting TAMs, regulating the
glioma TME to interfere with the recruitment of
TAMs also demonstrates the potential for
POSTN,
(GSCs),

contributes to the density of TAMs in the glioma

improving treatment of gliomas.

produced by glioma stem cells
TME and, therefore, promotes tumor growth
[60]. In line with this, down-regulating the
expression of POSTN leads to the inhibition of
TAM recruitment through the integrin av(33
signaling pathway. Decreased TAMs prolongs
the survival of mice with GSC-derived
xenografts [94].

In addition, the inhibition of CXC chemokine
receptor 2 (CXCR2) can halt tumor progression
when applied at the beginning of tumor growth
in vivo. CXCL2, a member of the CXC family,
plays a significant role in tumor progression by
promoting TAM recruitment and tumor
angiogenesis. Thus, CXCL2 is a new therapeutic
target for treating glioma. The CXCL2 receptor,
CXCR2, is closely related to glioma malignant
grade and tumor recurrence. The interaction
between CXCL2 and G-protein-coupled CXCR2
is potentially responsible for partial tumor
Inhibition of CXCR2 led to

decreased TAM recruitment and vessel density,

progression.
suggesting a novel opportunity for improving
the immunotherapeutic effect [95].

4.3 Treatment combined with concurrent
macrophage-associated immunotherapy

The CNS immune system, which can specifically
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harm pathological cells rather than healthy cells,
is tightly related at multiple immune checkpoints
to prevent excessive immune activation. Tumors
can take full advantage of these immune
checkpoints to exhibit immune escape [96].

The programmed death-1 (PD-1) receptor is
the most studied immune checkpoint protein.
PD1 inhibition has an outstanding ability to
reduce tumor progression and metastasis [97].
PD-1 is one of the CD28 signaling receptors and
exists in multiple immune cells, including
macrophages and lymphocytes [98, 99]. The
interaction between PD-1 and its two distinct
corresponding ligands, programmed death
ligand 1 (PD-L1) and programmed death ligand
2 (PD-L2) [100], play an important role in
regulating the tumor environment. Overex-
pression of PD-L1 is often associated with tumor
One
possible mechanism for the immune escape in
GBM is through the interaction between PD-1
and extracellular vesicles secreted by GBM cells
[101]. Anti-PD-1 antibodies are one of the

checkpoint

metastasis and high grade gliomas [3].

inhibitors that can specifically
suppress PD-L1 activation in the immune
response. Anti-PD-1 antibodies can promote the
activation and infiltration of T cells [102] and
tune up the pre-existing immune responses [98],
suggesting a potential target for prolonging the
overall survival of patients.

In line with this, anti-PD-1 treatment has a
better clinical outcome when combined with
traditional therapies. For example, when the
anti-PD-1 with

radiotherapy, an increase in CD8* lymphocytes

treatment is combined
[102] and macrophages, especially the portion of
M1 macrophages, is clearly observed. This
optimistic change in the TME improves the
efficiency of the immune response in gliomas
and greatly improves the overall survival [96].
The combined therapy of anti-PD-1 treatment
and TMZ chemotherapy also has a more
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efficient clinical outcome than monotherapy.
The median survival of mice with orthotopic
gliomas was significantly improved in the
combined therapy group compared to other
groups, including the control group and the
monotherapy groups (anti-PD-1 treatment or
TMZ treatment), suggesting that combined
therapy can promote the tumoricidal immune
response to prolong survival [103].

A combination of anti-PD-1 and other immune
checkpoint inhibitors also exhibits a novel
potential therapeutic effect. CCL2, the first
chemokine observed in the TME [4], is a
member of the C-C chemokines family. C-C
chemokines are associated with recruitment and
polarization of TAMs, which influence tumor
progression and evasion [104]. To fully exercise
its immune surveillance in the CNS, CCL2 has
to cooperate with its ligand, C-C chemokine
receptor type 2 (CCR2). Together, this
CCL2/CCR2 axis demonstrates a significant
pro-tumor effect by encouraging tumor growth
and immune suppression in the glioma TME
[105]. CCX872, an antagonist of CCR2, blocks
the CCL2-CCR2 axis. CCX872 can prolong the
median survival in mice with KR158 glioma by
itself and demonstrates a stronger therapeutic
effect in mice with 005 GSC GBM when applied
with anti-PD-1 as a combined therapy [106].

Apart from prolonging the survival of

patients with glioma as written above,
immunotherapy also improves the quality of life
(QoL) in patients with gliomas. Traditional
treatments include surgery, chemotherapy, and
radiotherapy, often with fractionated whole-
(fWBI).

radiotherapy, let alone fWBI, leads not only to

brain irradiation However, using
inhibition of tumor growth, but also to deficits
in cognitive function, such as loss of memory
[107]. Interestingly, combination treatment with
CSF-1R and fWBI prolongs survival and rescues

the fWBI-associated cognitive function of mice
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with glioma, offering potent opportunities to
improve both the survival and QoL of patients
with gliomas [108].

5 Conclusion and perspective

Gliomas, the most common primary brain
tumors, have a poor prognosis, despite the
exploration of new therapies for decades. Thus,
there is a desperate demand for better therapies,
which lead to a better clinical outcome in both
survival and QoL, especially for patients with
GBM [1, 109]. One of the most promising new
therapies is immunotherapy, which demonstrates
outstanding anti-tumor effects in a series of
clinical trials by arresting proangiogenic behavior
and relieving the immunosuppression [1].
TAM-associated immunotherapy has emerged
as a potential therapeutic strategy. TAMs are
recruited by signals produced by glioma cells or
non-malignant cells in the glioma TME and are
abundant in the tumor region [110]. TAMs
M1 or M2
between the two

into either
shift
phenotypes. The M1 and M2 macrophages exert

become polarized
phenotype and

dual influences on glioma progression by

adjusting the adaptive immune responses,
excessive angiogenesis, and tumor metastasis.
Also, TAMs can modulate the glioma TME. M1
macrophages suppress tumor progression,
while M2 macrophages encourage the neoplastic
cells to completely express their malignancy.
There are hundreds of macrophage phenotypes
and microglia, based on their surface markers,
which exert a tremendous impact on pathological
[111-114]. Fully

understanding the interaction between these

and physiological changes
cells and their pathological and physiological
impact on human bodies may also help to
explain the disease to a deeper level. Overall,
targeting TAMs is a promising novel therapeutic
strategy for suppressing tumor progression and
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improving prognosis, not only as a monotherapy
but also when combined with either standard
therapies or immunotherapies.

Some obstacles still desperately need to be
solved for TAM-based therapies. First, resistance
in TMZ-based chemotherapy and TAM-based
immunotherapy is often observed. One of the
possible mechanisms in immunotherapy is the
IGF-1R/PI3K signaling, which is believed to
participate in the resistance to CSF-1R inhibition,
resulting in tumor recurrence [89]. Second, the
BBB is a challenge for drugs to get access to the
brain microenvironment. Under pathological
contexts like GBM, BBB can be further defined as
the blood-brain tumor barrier (BBTB) [115]. The
BBTB has relatively narrow vasculature, which
prevents peripheral drugs from entering the GBM
microenvironment and exhibiting the expected
pharmacological effect on GBM, especially for
some new drugs like nanocarriers [116, 117].

In summary, manipulating TAMs in the TME
can suppress tumor progression. Therefore, this
approach may result in a durable consistent
anti-tumor response by regulating the innate
and adaptive immune response, abnormal
angiogenesis, and tumor metastasis. Furthermore,
TAMs exhibit an excellent advantage in being
more genomically stable than malignant cells,
resulting in less possibility of drug resistance
[109].
although TAM-associated immunotherapy hig-

and treatment failure Unfortunately,
hlights a potential opportunity for enhancing
the efficacy of anti-glioma therapy, there are no
powerful and effective therapies for gliomas that
are available at present. To conquer the
resistance in immunotherapies and fulfill the
goal of targeting TAMs as either a monotherapy
or combined therapy, further exploration into
the possible relationships between TAMs and
neoplastic cells and the TME is of great

importance.
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